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Abstract. Threats can trigger incidents in information systems (IS) causing dam-
age or intangible material loss to assets. A good selection of safeguards is critical
for reducing risks caused by threats. This paper deals with the selection of failure
transmission, preventive and palliative safeguards that minimize the maximum risk
of an IS for a specified budget. We assume that all the elements in the IS are valu-
ated using a linguistic scale, which is capable of accounting for imprecision and/or
vagueness concerning the inputs. Trapezoidal fuzzy numbers are associated with
these linguistic terms, and risk analysis and management is consequently based on
trapezoidal fuzzy number arithmetic. We model and solve the respective fuzzy op-
timization problem by means of the simulated annealing metaheuristic and give an
example to illustrate the safeguard selection process.
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1. Introduction

Several methodologies based on ISO/IEC 27000 [9,10,11,12] have been developed to deal
with risk analysis and management in information systems (IS), such as MAGERIT by
the Spanish Ministry of Public Administrations [16]; CRAMM by the Central Computing
and Telecommunications Agency (UK) [3]; or NIST SP 800-30 by the National Institute
of Standard and Technology (USA) [20].

These methodologies do not, however, consider imprecise ratings; they use precise
values on different, usually percentage, scales. Besides, experts may find it difficult to
elicit crisp values for the input parameters in risk analysis. In [27] we proposed an exten-
sion of the MAGERIT methodology for risk analysis and management based on classical
fuzzy computational models. The experts could select linguistic terms from a linguistic
term scale to represent these values, such as probabilities or the consequences of events.
Trapezoidal fuzzy numbers were then associated with these linguistic terms and risk anal-
ysis and management computations were based on trapezoidal fuzzy number arithmetic.

The interest of the linguistic approach for risk analysis in IS is because it is located
halfway between quantitative and qualitative approaches, overcoming the disadvantages
of both, as advocated in [17,27,35] and discussed here.

In this paper, we review the fuzzy extension of MAGERIT methodology and focus
on risk management, specifically as regards the selection of safeguards, which is crucial
for dealing with threats in an IS. Preventive safeguards reduce the frequency of threats,
whereas palliative safeguards reduce the degradation caused by threats to assets and fault
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transmission safeguards reduce the fault transmission probability between a pair of con-
secutive assets.

Suppose that we have a set of threats that have to be considered sequentially to com-
pute the risk in the IS. However, no information about this sequentiality is available. Con-
sequently, we have a fuzzy multi-objective optimization problem whose objective func-
tions represent new (reduced) risks as a result of the possible application of preventive
and palliative safeguards regarding these threats and the application of failure transmis-
sion safeguards subject to a financial budget. As these risks are not summable, we decided
to minimize the maximum risk.

The resulting optimization problem is a fuzzy combinatorial optimization problem
since its complexity increases with the dimension of the asset network. Moreover, the
solutions would be less computationally feasible with a larger asset network, since it
would be more involved to compute the new failure transmission probabilities across the
network.

Metaheuristics have to be used to solve this especially complex and combinatorial
problem. Specifically, we propose using the simulated annealing (SA) metaheuristic. SA
is a trajectory-based metaheuristic that considers a new solution in each iteration of the
search process. The acceptance of worse solutions makes for a broader search for the
optimal solution and avoids trapping in local optima in early iterations. A diversified
search, in which practically all moves are allowed, is carried out in the early iterations
of the search process. This becomes more and more intensive as the iterations progress
until a local search is performed in the final iterations, where only better moves will be
accepted.

In the next section we briefly describe the extension of the MAGERIT methodology
based on classical fuzzy computational models. In Section 3 we tackle with selection of
safeguards for risk management. A fuzzy optimization problem is modeled to perform this
selection process, and a simulated annealing technique is proposed to solve the problem.
In Section 4, we illustrate the selection of safeguards with an example. Finally, some
conclusions are provided in Section 5.

2. A fuzzy extension of MAGERIT methodology

The international standards [9,10,11,12] that establish information security management
systems (ISMS) certification requirements are based on BS 7799 published by BSI (British
Standards Institution). The first part of the standard (BS 7799-1), published in 1995, es-
tablished, for the first time, a set of best practices for information security management to
be used by any company or organization, while the second part (BS 7799-2), published in
1998, established information security management system requirements for certification
by independent audits.

In 1999, the ISO/IEC JTC 1 committee adopted BS 7799-1 without major changes as
ISO/IEC 17799. It was renamed ISO/IEC 27002 in 2005, while the standard BS 7799-2
was adopted as ISO/IEC 27001. This is the main standard in the ISO/IEC 27000 standard
series (27000 to 27019 and 27030 to 27044), which provides the framework for infor-
mation security management underpinning the adoption of different IS risk analysis and
management methodologies by national or corporate bodies. Specifically, the MAGERIT
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methodology ([16]) was established in Spain by the Spanish Ministry of Public Adminis-
trations.

According to the MAGERIT methodology, an information system [21] consists of a
set of assets, A = {A1, ..., An}. An asset is anything that is of value to the organization
and therefore requires protection. These assets are divided into terminal assets, AT =
{As+1, ..., As+t}, which often account for the total value of the IS and are usually data,
information or business processes, and support assets (hardware, software, personnel,
facilities...), AS = {A1, ..., As}, which support terminal assets enabling data processing
and proper services development. Therefore, let us suppose that the assets,A1, ..., An, are
arranged so that the first s assets are support assets and the others are terminal assets, i.e.,
A = AS ∪ AT and n = s+ t.

Although essential, support assets are a continuous source of threats and constitute the
vulnerabilities of the IS, since a support asset failure may prevent the correct operation
of terminal assets. In fact, IS assets are interrelated, forming a directed and acyclic graph.
Thus, a failure in one asset can be propagated via other assets to the terminal assets, which
are located at the end of the graph, causing huge losses for the organization.

Risk analysis in IS entails computing the failure transmission probabilities between
the system assets, the value of the terminal assets, the degradation caused by threats and
their probabilities of materialization or frequencies, and, risk management then estab-
lishes safeguards to prevent the materialization of the threats or reduce their impact. There
are, however, no historical data, nor any possibility of putting in place mechanisms for ob-
taining empirical data. Consequently, subjective knowledge from experts is the only way
to determine these factors.

The MAGERIT methodology offers two models: an ordinal symbolic qualitative model
and a non-fuzzy quantitative model.

Qualitative model. This model establishes an ordinal scale:

V = {v0, ..., vn−1}
ϕ
≈ [0, n− 1].

The different magnitudes of risk are rated on this scale, where v0 is a term under which
the magnitude is considered negligible. For example, it can be said that the impact of a
particular threat on an asset is vi ∈ V . The operators considered in this qualitative model
are: 1) max and min operators; and 2) product by scalars in [0, 1], which can represent
magnitudes such as the degradation associated with the materialization of a threat on an
asset or the potential reduction of the impact of the threat thanks to a safeguard. For
example, if a certain safeguard reduces impact vi by α%, then this impact is reduced to a
level β = vi × (1− α

100 ) = ϕ(vi)× (1− α
100 ) = i× (1− α

100 ) ∈ [0, n− 1].
The result will not necessarily be a linguistic term on the given scale. In the MAGERIT

methodology, a linguistic scale term is assigned to the result of these operators by round-
ing. This is computed in the example above as φ(β) = round(β) = round(i × (1 −
α
100 )) ∈ [0, n− 1] ∩ N = {v0, ..., vn−1}.

For example, using the scale {v0, ..., v4}, let us asume that a threat implies an im-
pact value v3 on an information asset and that the frequency of the threat is 0.4. Then,
MAGERIT computes the risk associated with this threat on the asset as 0.4 × v3 =
0.4× ϕ(v3) = 0.4× 3 = 1.2 and φ(1.2) = v1. So the result is a risk of v1.

This methodology has several drawbacks:
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1. It is necessary to assess some magnitudes, such as the degradation or the frequency
of a threat, by means of precise percentages. Some operations, such as the product
or the sum of linguistic terms, are not allowed because the results of these operations
may be out of range [0, n− 1].

2. A lot of information is lost through the rounding. Note that the function φ is not
bijective.

3. Such terms as 0.5 × v3 = 1.5 are somewhat ambiguous. We do not know whether
this value should be assigned to v1 or v2.

4. It needs symmetric and uniformly distributed linguistic terms scales.

Other symbolic models solve some of these drawbacks. For example, the 2-tuple model
[14] is an ordinal symbolic computation model designed to solve the problem of discretiz-
ing the operation space on the linguistic term scale. The results of symbolic operations
performed on the scale L = {l0, ..., ln−1} ≈ [0, n − 1] are given by tuple (li, α), where
li is the linguistic term closest to the result and α ∈ [−0.5, 0.5) represents the distance to
the term. For example, if an operation on the symbolic scale {l0, ..., l4} outputs the value
3.25, then that value is the tuple (l3, 0.25)

We then get the function ∆ : [0, n − 1] −→ L × [−0.5, 0.5) with β 7−→ ∆(β) =
(li, α), i = round(β) (the rounding operator) and α = β − i.

It is verified that ∆ is bijective, and its inverse is ∆−1(li, α) = i+α. This guarantees
the preservation of information. However, the 2-tuple method does not allow non-linear
operators. Three linear operators are introduced in [6]: the arithmetic mean, the weighted
average and the OWA (ordered weighted aggregation) operator. The methods reported in
[31,32] are based on the 2-tuple model and extend the number of operators that can be
used, but they do not include the product of linguistic terms.

Quantitative model. This model directly measures each magnitude in the range [0,1] so
that the minimum value corresponds to zero and the maximum to one. The main drawback
of this model is that experts may find it difficult to assign precise values to the model input
parameters, and the results are sensitive to these values.

Following [27], experts can, as an alert native to previous models, select linguistic
terms from a linguistic term scale to represent these values, see Table 1 and Fig. 1. Trape-
zoidal fuzzy numbers are usually associated with these linguistic terms and risk analysis
and management computations are based on trapezoidal fuzzy number arithmetic.

Table 1. Linguistic term scale

Term Trapezoidal fuzzy number
Very low (VL) (0, 0, 0, 0.25)
Low (L) (0, 0.05, 0.15, 0.25)
Medium low (ML) (0.15, 0.25, 0.35, 0.45)
Medium (M) (0.35, 0.45, 0.55, 0.65)
Medium high (MH) (0.55, 0.65, 0.75, 0.85)
High (H) (0.75, 0.85, 0.95, 1)
Very high (VH) (0.95, 1, 1, 1)
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Fuzzy logic was introduced by Lofty A. Zadeh in 1965 [33]. A normalized trapezoidal
fuzzy number with support in the interval [a1, a4] is a t-tuple Ã = (a1, a2, a3, a4), with
a1 ≤ a2 ≤ a3 ≤ a4, and a function µÃ(x) : < −→ [0, 1]. Let us denote by <T F the set
of all these numbers.

Fig. 1. Membership functions scale of fuzzy numbers

We consider the usual arithmetic for trapezoidal fuzzy numbers [30] and the internal
composition law ], which is used in the algorithm to compute the failure transmission
probability between support and terminal assets, described in [21]:

(a1, b1, c1, d1)](a2, b2, c2, d2) = (a1+a2−a1a2, b1+b2−b1b2, c1+c2−c1c2, d1+d2−d1d2).
(1)

Indeed, ] is an internal composition law in<T F , and specifically in [0, 1]T F , because
if 0 ≤ a1 ≤ b1 ≤ c1 ≤ d1 ≤ 1 and 0 ≤ a2 ≤ b2 ≤ c2 ≤ d2 ≤ 1, then 0 ≤
a1 + a2 − a1a2 = 1− (1− a1)(1− a2) ≤ 1− (1− b1)(1− b2) = b1 + b2 − b1b2 ≤ 1.
Analogously, 0 ≤ b1 + b2 − b1b2 ≤ c1 + c2 − c1c2 ≤ d1 + d2 − d1d2 ≤ 1.

Following the risk analysis methodology, first, the failure transmission probability
D̃(Ai, Ak) is computed considering all possible paths connecting Ai with Ak, as well as
the failure transmission probability between two consecutive assets Au and Av belonging
to a path from Ai to Ak in the graph, d̃(Au, Av). For example, the failure transmission
probability from A1 to A4 in Fig. 2(a) is computed as

D̃(A1, A4) = d̃(A1, A3)⊗ d̃(A3, A4) ] d̃(A1, A2)⊗ d̃(A2, A4) =

= d̃(A1, A3)⊗ d̃(A3, A4)⊕ d̃(A1, A2)⊗ d̃(A2, A4)	
	d̃(A1, A3)⊗ d̃(A3, A4)⊗ d̃(A1, A2)⊗ d̃(A2, A4).

The algorithm proposed in [21] can be used for computing failure transmission proba-
bilities in more complex ISs. The failure transmission probability fromAi toAk, D̃(Ai, Ak),
is computed as follows. We denote by P={P1, ..., Ps} the set of paths in the analysis of
the failure transmission from Ai to Ak. Then,

A) If all assets (excluding Ai and Ak) in the paths in P are influenced by only one asset,
then

D̃(Ai, Ak) =
s
⊕
j=1

D̃(Ai, Ak|Pj), (2)

where D̃(Ai, Ak|Pj) = d̃(Ai, Aj1)⊗ d̃(Aj1, Aj2)⊗...⊗d̃(Ajn, Ak), and Pj : (Ai →
Aj1 → Aj2 → ...→ Ajn → Ak).
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B) Otherwise, we assume that the first r paths in P are formed by assets (excluding Ai
and Ak) influenced by only one asset, and the remaining s − r paths include at least
one asset influenced by two or more assets. Then, for the r first paths, we proceed as
in A), and we denote by S the set including the s − r remaining paths. We proceed
with S as follows:
(i) Compute the set of non-terminal assets in S influenced by two or more assets,

denoted by I , and the subset of I including assets uninfluenced by any other
asset in I , denoted by NI .

(ii) Consider an asset Ar in NI and then simplify the paths in S that include asset
Ar making Ai → Ar → ... → Ak, with d̃(Ai, Ar) = D̃(Ai, Ar) (computed as
in A)).

(iii) Remove repeated paths from S and keep only one instance.
(iv) Build I and NI again from S.
(v) If NI is not empty, go to (ii). Otherwise, the algorithm finishes.
Let us denote the resulting set of paths by S= {P ′1, ..., P ′m}, with m ≤ s − r. Then,
the degree of dependency of Ak regarding Ai is

D̃(Ai, Ak) =
r
⊕
j=1

D̃(Ai, Ak|Pj)
m
⊕
l=1

D̃(Ai, Ak|P ′l ). (3)

Fig. 2. Examples of ISs.

Assets are usually evaluated by taking into account three components: confidentiality,
integrity and authenticity. A very common practice is to give each component a monetary
value, i.e., attempt to quantify the losses that would be incurred if there were a breach
of the confidentiality of terminal assets, the terminal assets were damaged or the termi-
nal assets were unavailable for any length of time. This is a practice recommended by
international standards based on ISO 27000 [3,9,12,16,20]. Let us denote the value of the
terminal asset Ak by ṽk = (ṽk1, ṽk2, ṽk3).

When a threat to a support asset Ai materializes, causing a failure, the organization’s
biggest concern is to prevent the failure from being transmitted to terminal assets, since
this would lead to losses in the value components. We denote by T ij the j-th threat to asset
Ai, i = 1, ..., n, j = 1, ..., ni. T ij is defined by the corresponding degradation of value
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components, d̃
T i
j

= (d̃
T i
j

1 , d̃
T i
j

2 , d̃
T i
j

3 ), and the frequency f̃T
i
j with which the threat to Ai

materializes, where d̃
T i
j

l and f̃T
i
j are represented by a linguistic term and the respective

trapezoidal fuzzy number. Then, the impact that threat T ij has on the terminal asset Ak,

with degradation d̃
T i
j , is Ĩ

T i
j

k = (d̃
T i
j

1 × ṽk1, d̃
T i
j

2 × ṽk2, d̃
T i
j

3 × ṽk3).
Finally, the risk to asset Ak caused by the threat T ij is the product of the impact

on the terminal asset multiplied by the probability, p̃, of this threat reaching asset Ak:

R̃
T i
j

k = p̃× Ĩ
T i
j

k = p̃×
(
d̃
T i
j

1 ⊗ ṽk1, d̃
T i
j

2 ⊗ ṽk2, d̃
T i
j

3 ⊗ ṽk3
)

.

However, p̃ is the product of the frequency f̃T
i
j multiplied by the failure transmission

probability between assets Ai and Ak, D̃(Ai, Ak). Therefore,

R̃
T i
j

k =

(
R̃
T i
j

k1 , R̃
T i
j

k2 , R̃
T i
j

k3

)
= D̃(Ai, Ak)⊗ f̃T

i
j ⊗ Ĩ

T i
j

k =

= D̃(Ai, Ak)⊗ f̃T
i
j ⊗

(
d̃
T i
J

1 ⊗ ṽk1, d̃
T i
j

2 ⊗ ṽk2, d̃
T i
j

3 ⊗ ṽk3
)
.

The total risk for each component l (l = 1, 2, 3) of the IS for threat T ij is the sum of
the risk for each terminal asset:

R̃
T i
j

l =

n⊕
k=m+1

(
D̃(Ai, Ak)⊗ f̃T

i
j ⊗ ṽkl ⊗ d̃

T i
j

l

)
. (4)

Note that a similarity function is required to associate the resulting trapezoidal fuzzy
number with an element in the linguistic term set. This function can also be used at any
step of the methodology to derive the linguistic terms associated with the respective trape-
zoidal fuzzy numbers output to represent dependencies, accumulated values, etc.

For instance, we could use the similarity function proposed in [23,24], which accounts
for the shared area between the generalized fuzzy numbers with respect to the total area
of these fuzzy numbers in addition to the geometric distance and the distance between
the centers of gravity: Given two trapezoidal fuzzy numbers Ã = (a1, a2, a3, a4) and
B̃ = (b1, b2, b3, b4), their similarity can be computed by

– if max{(a4 − a1), (b4 − b1)} 6= 0 (non-empty intersection), then

S(Ã, B̃) = 1−(1−α−β)
(

1−
∫ 1
0
µÃ∩B̃(x)dx∫ 1

0
µÃ∪B̃(x)dx

)
−α

∑
|ai−bi|
4 −βd

[
(xÃ, yÃ), (xB̃ , yB̃)

]
,

– otherwise,
S(Ã, B̃) = 1−

(
1−α−β

2 + α
)
·
∑
|ai−bi|
4 −

(
1−α−β

2 + β
)
· d
[
(xÃ, yÃ), (xB̃ , yB̃)

]
,

whereα+β < 1, µχ̃ is the membership function of χ̃, µÃ∩B̃(x) = min
0≤x≤1

{µÃ(x), µB̃(x)},

µÃ∪B̃(x) = max
0≤x≤1

{µÃ(x), µB̃(x)}, (xÃ, yÃ), (xB̃ , yB̃) are the centers of gravity of Ã

and B̃, and d is a distance in R2.
Note that direct assignments based on a rigid linguistic term scale is not always ad-

visable since the expert has no say in the number of linguistic terms that the scale is to
include and about the appearance of their associated trapezoidal fuzzy numbers. Instead
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we propose the use of the betting and lottery-based method for fuzzy probability elicita-
tion described in [27].

Betting and lottery-based methods are commonly used to assign probabilities and can
also be used to assign fuzzy probabilities ([19,7]). In betting methods, given two selected
monetary values x > y, the expert chooses one of the following two gambles:

– b1: If event A happens, then you win x$. Otherwise, you lose y$.
– b2: If event A does not happen, then you win y$. Otherwise, you lose x$.

An interactive process is enacted until two alternative gambles to which the expert is
indifferent are reached, and it follows that p(A) = x/(x+y). In this process, if the expert
is not indifferent, then the expected utility of the selected gamble should be higher than
for the rejected gamble. Then, the analyst has to update monetary values and offer the
expert two new gambles.

In lottery-based methods, given a probability and monetary values x$ and y$, the
expert chooses between the following lotteries:

– l1: If event A happens, then you win x$. Otherwise, you lose y$.
– l2: You win x$ with probability p, or y$ with probability 1− p.

An interactive process is again enacted, in which the value p has to be readjusted until
two lotteries to which the expert is indifferent are reached.

A realistic scenario is where experts have an interval rather than a precise value in
mind at the point when they are indifferent to either bet or lottery, that is, for the lottery-
based method there will be an interval [a, c] such that if p = [a, c], then the expert has no
preference for either lottery l1 or l2. Similarly, the betting method can result in an interval
of indifference [b, d].

On the other hand, it is recommendable to use several methods to test for expert con-
sistency and bias. In this regard, the following algorithm can be used to derive a fuzzy
probability on the basis of betting and lottery-based methods ([27]):

– If [a, c] ∩ [b, d] = ø, then the expert’s probabilistic judgment is inconsistent.
– If any of the intervals is contained in the other [a, c] ⊆ [b, d] (or [b, d] ⊆ [a, c]), then

we assume that the trapezoidal fuzzy number (b, a, c, d) (or (a, b, d, c)) designates the
expert’s probabilistic judgment.

– If [a, c]∩ [b, d] 6= ø, is uncountable, and none of the intervals is contained in the other,
then, assuming that a ≤ b ≤ c ≤ d, (a, b, c, d) designates the expert probabilistic
judgment.

This is a more efficient way of allocating the probability of an event without the biases
inherent in the use of linguistic scales. Nevertheless, direct assignment based on linguistic
scales is much faster and more usual in decision-making processes involving fuzzy logic.

3. Optimal selection of safeguards in risk management

The safeguards that should be implemented to reduce the total risk in the IS have to be
identified according to the established risk indicators for each threat to the IS.
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Safeguards can be preventive, if they reduce the frequency f̃ of threats; palliative, if
they reduce the degradation d̃ caused by threats to assets; or fault transmission safeguards,
if they reduce the fault transmission probability between a pair of consecutive assets, i.e.,
d̃(Au, Av).

Let us denote the sets of safeguards by:

– S : {Suvt , u, v = 1, ..., n; t = 1, ..., nuv} is the set of failure transmission safeguards,
where Suvt is the t-th failure transmission safeguard between the consecutive (con-
nected) assets Au and Av . The corresponding effect of each safeguard Suvt on the
failure transmission probability d̃(Au, Av) is denoted by ẽS

uv
t and its cost by cuvt .

– S(pr) : {S(pr)T i
j

t , i = 1, ..., n; j = 1, ..., ni; t = 1, ...,mpr
ij } is the set of preventive

safeguards, where S
(pr)T i

j

t is the t-th preventive safeguard for the j-th threat to asset

Ai. Its effect on the frequency of the threat T ij is ẽS
(pr)Ti

j
t and its cost is c

(pr)T i
j

t .

– S(pa) : {S(pa)T i
j

t , i = 1, ..., n; j = 1, ..., ni; t = 1, ...,mpa
ij } is the set of palliative

safeguards, where S
(pa)T i

j

t is the t-th palliative safeguard for the j-th threat to asset

Ai. Its effect on the degradation in the component l of the threat T ij is ẽS
(pa)Ti

j
t

l and its

cost is c
(pa)T i

j

t .

We can select different packages of safeguards to reduce risk. These packages will be

represented by binary vectors xuv = (xuvt )nuv
t=1 , xprij = (x

(pr)T i
j

t )
mpr

ij

t=1 , xpaij = (x
(pa)T i

j

t )
mpa

ij

t=1 ,

respectively, where xuvt = 1, x
(pr)T i

j

t = 1 and x
(pa)T i

j

t = 1 if the t-th safeguard Suvt ,

S
(pr)T i

j

t and S
(pa)T i

j

t is selected, respectively. Besides, we denote by cuv = (cuv1 , ..., cuvnuv
),

cprij = (c
(pr)T i

j

1 , ..., c
(pr)T i

j

mpr
ij

) and cpaij = (c
(pa)T i

j

1 , ..., c
(pa)T i

j

mpa
ij

) the safeguard cost vectors.

If the effect of a safeguard is e% or in per one, then its parameter is reduced by that
amount. The effect caused by a safeguard can be also represented by a linguistic term from
the scale in Table 1. For example, the probability of a threat after the implementation of a
preventive safeguard with effect ẽ is reduced to the level (1̃	 ẽ)⊗ f̃ .

Note that 	 is not an internal composition law in TF[0,1]. However,

– Ã, B̃ ∈ TF [0, 1]⇒ Ã⊗ (1̃	 B̃) ∈ TF [0, 1],
– Ã ⊗ (1̃ 	 B̃) ≤ Ã with the partial order of the trapezoidal fuzzy numbers (i.e.,
Ã ≤ B̃ ⇔ a1 ≤ b1, a2 ≤ b2, a3 ≤ b3, a4 ≤ b4) and

– Ã⊗ (1̃	 B̃) decreases with B̃.

In [25] we propose a method for reducing the degrees of dependency from all support
assets to terminal assets minimizing the costs for the company.

As mentioned above, the probability of transmission of failure from support assets
D̃(Ai, Ak) is the result of fuzzy operations with the probabilities of transmission of failure
through intermediate assets linking the attacked support asset with other assets.

In each of these intermediate assets, safeguards can be enforced to reduce the proba-
bility of transmission of a failure. The effect induced by a safeguard to reduce the proba-
bility of transmission of failures between two assets Au and Av can also be defined as a
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linguistic term, which is represented by a fuzzy number ẽu,v ∈ TF [0, 1]. So, if the degree
of direct dependency between assets Au and Av is d̃(Au, Av), then, when we implement
a safeguard with effect ẽu,v , the degree of direct dependency is reduced to

d̃(Au, Av)⊗ (1̃	 ẽu,v).

The problem of keeping at an acceptable (low or very low) level the failure transmis-
sion probabilities among support and terminal assets with minimal costs can be repre-
sented as follows:

min
∑n
u=1

∑
v∈Nu

∑nuv

t cuvt xuvt

s. t. ˜D(Ai, Ak) ≤ Ũik ∀i ∈ AT , k ∈ AS
xu,vt ∈ {0, 1} ∀u, v ∈ Nu, t ∈ {1, ..., nuv}

(5)

whereNu is the set of assets connected by an arc fromAu, Ũik is a residual value accepted
by the experts, xu,vt are the decision variables (xu,vt = 1 means that safeguard Su,vt is

selected), and ˜D(Ai, Ak) is reassessed replacing values ˜d(Au, Av) by the affected values
regarding the selected safeguards:

˜d(Au, Av)⊗
[
⊕t(1̃	 ẽu,vt )

]
,

where Au and Av are two consecutive assets connected by an arc in some path between
Ai and Ak.

This problem can be solved by dynamic programming and metaheuristics techniques
as shown in [25]. Remember that indirect failure transmission probabilities are recursively
computed following the algorithm described in Section 2. Thus, the failure transmission
probabilities of the support assets further away from the terminals can be computed from
the failure transmission probabilities of the closest assets. Therefore, the problem can be
solved stepwise, and the principle of optimality in dynamic programming holds: Given an
optimal sequence of decisions, every subsequence is, in turn, optimal. Then we proceed
as follows:

– Step 0. Let AT be the set of terminal assets.
– Step 1. Consider AT1 including support assets whose children belong to AT0 only. Iden-

tify safeguards that minimize costs keeping the failure transmission probabilities over
their children at an acceptable level.

– Step 2. Consider AT2 including support assets whose children belong to AT0 ∪AT1 only.
Identify safeguards that minimize costs keeping the failure transmission probabilities
over AT0 under an acceptable level. Note that the failure transmission probabilities
of indirect dependency from the children of AT2 to terminal assets have already been
computed in the previous step, so we only need to identify the failure transmission
probabilities over assets in AT0 ∪ AT1 .
...

– Step i. Consider ATi including support assets whose children belong to AT0 ∪AT1 ∪ ...∪
ATi−1 only. Identify safeguards that minimize costs keeping the failure transmission
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probabilities over AT0 under an acceptable level. Note that again we only need to
identify the direct failure transmission probabilities over assets in AT0 ∪AT1 ∪...∪ATi−1.
...

However, we propose in this paper to reduce the risk index on terminal assets subject
to a financial budget.

The optimization problem to be solved consists of minimizing the maximum risk for
the IS subject to a financial budget c:

min z = maxi,j,l{R̃
T i
j

l }

s. t.
∑n
u=1

∑
v∈Nu

cuv · xuv +
∑n
i=1

∑ni

j=1cprij · x
pr
ij +

∑n
i=1

∑ni

j=1cpaij · x
pa
ij ≤ c,

(6)

where cik, cprij and cpaij are safeguard cost vectors.
Note that we have a set of threats that have to be considered sequentially rather than

simultaneously to compute the risk in the IS. However, no information about this sequen-
tiality is available. Consequently, we have a fuzzy multi-objective optimization problem
whose objective functions represent new (reduced) risks as a result of the possible applica-
tion of preventive and palliative safeguards regarding these threats and the application of
failure transmission safeguards. Thus, these risks are not summable, and we have decided
to minimize the maximum risk.

The objective function has to be total order and fuzzy numbers are not. The defini-
tion of indexes to rank fuzzy trapezoidal numbers has been a transcendental issue in the
history of fuzzy logic. More than thirty ranking methods for trapezoidal fuzzy numbers
are described in [1,2,29]. In this paper we use the index proposed by Murakami et al [18],
which computes the centroid of the compared fuzzy numbers: If Ã = (a1, a2, a3, a4) then
its centre of gravity is the point (X̄Ã, ȲÃ), with

ȲÃ =
a3−a2
a4−a1 + 2

6
and X̄Ã = ȲÃ (a3 − a2) +

(
1− ȲÃ

)
(a4 − a1) .

The Murakami index first compares the abscissas of the centroids. The fuzzy numbers
whose centroids have bigger abscissas are better ranked. If abscissas are equal, then the
one with the higher ordinate is ranked first.

The fuzzy optimization problem is a combinatorial problem: its complexity increases
with the dimension of the asset network since different packages of failure transmission
safeguards could be considered in each arc, and the selected safeguards for the assets
closest to the terminal assets also reduce the fault transmission probability of the assets
that are farthest away. Moreover, the solutions would be less computationally feasible
with a larger asset network, since it would be more involved to compute the new failure
transmission probabilities across the network.

Metaheuristics have to be used to solve this especially complex and combinatorial
problem (2

∑
u,v nik+

∑
i,j m

pr
ij +

∑
i,j m

pa
ij possible solutions and 3 × s (number of threats

under consideration) fuzzy risk elements in the objective function).
Simulated annealing (SA) is one of the most used metaheuristics because of its ease

of implementation and efficiency [4,15]. Its pseudocode (for a minimization problem) is
as follows:
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– Randomly generate an initial feasible solution x0. Do x∗ = x0, f
∗ = f(x0), i = 0.

Select the initial temperature T0 = T (Ti temperature at step i).
– Repeat until the stopping criterion is satisfied:

• Randomly generate y ∈ N(xi) (where N(xi) is a neighborhood of xi)
• If f(y)− f(xi) ≤ 0, then
∗ xi+1 = y
∗ If (f(x∗) > f(xi)), then x∗ = xi, f

∗ = f(xi)

otherwise:
∗ p ∼ U(0, 1) (p is randomly generated in [0, 1])
∗ If p ≤ e−(f(y)−f(xi))/Ti , then xi+1 = y

• Update temperature, i = i+ 1

The basic idea of SA is as follows. An initial feasible solution is randomly generated.
A new solution, y, is randomly generated from the neighborhood of the current solution
at each iteration, N(xi). If the new solution is better than the current one, then the al-
gorithm moves to that solution. Otherwise, there is a certain probability of moving to a
worse solution, e−(f(y)−f(xi))/Ti . The acceptance of worse solutions makes for a broader
search for the optimal solution and avoids trapping in local optima in early iterations. The
probability of accepting a worse move is a function of both a temperature factor (T ) and
the change in the cost function (f(y)− f(xi)). The initial value of T is high, which leads
to a diversified search, since practically all moves are allowed. As T decreases, the prob-
ability of accepting a worse move falls, and only better moves will be accepted when it is
zero.

4. An illustrative example

Let us consider the IS in Fig. 2(b). The asset A5 is terminal and its monetary value (in
thousands of units) is ṽ5 = ((10, 15, 20, 25), (18, 20, 23, 30), (12, 15, 26, 30)), for the
three components, respectively.

The probabilities of failure transmission from each support asset to the terminal asset
are:

D̃(A4, A5) = d̃(A4, A5) = M = (0.35, 0.45, 0.65, 0.75),

D̃(A3, A5) = d̃(A3, A5) = H = (0.75, 0.85, 0.95, 1),

D̃(A2, A5) = d̃(A2, A5) ] (d̃(A2, A3)⊗ D̃(A3, A5)) =
= H ] (H ⊗H) = (0.93, 0.97, 0.99, 1),

D̃(A1, A5) = (d̃(A1, A4)⊗ D̃(A4, A5)) ]
(
d̃(A1, A2)⊗ D̃(A2, A5)

)
=

= (V H ⊗M) ] (V H ⊗ (0.93, 0.97, 0.99, 1)) = (0.92, 0.98, 0.99, 1).

We consider five threats with frequencies and degradations shown in Table 2. The risks
induced for each individual threat on the terminal asset A5 before applying the safeguard
are shown in Table 3.

Let us consider the 32 failure transmission safeguards in Table 4 and the 22 palliative
and 16 preventive safeguards for the threats in Table 5. The budget is c = 5000 monetary
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units. Then, we have to solve the following fuzzy optimization problem to identify the
safeguards to be implemented:

min z = maxl{R̃
T 1
1

l , R̃
T 2
1

l , R̃
T 2
2

l , R̃
T 3
1

l , R̃
T 4
1

l }

s. t.
∑n
u=1

∑
v∈Vu

cuv · xuv +
∑n
i=1

∑ni

j=1cprij · x
pr
ij +

∑n
i=1

∑ni

j=1cpaij · x
pa
ij ≤ 5000

(7)
with

R̃
T 1
1

l = D̃′(A1, A5)⊗ f̃T 1
1 ⊗ (⊗4

t=1(1̃	 ẽS
(pr)T1

1
t ))⊗ d̃T

1
1

l ⊗ (⊗6
t=1(1̃	 ẽS

(pa)T1
1

t )),

R̃
T 2
1

l = D̃′(A2, A5)⊗ f̃T 2
1 ⊗ (⊗2

t=1(1̃	 ẽS
(pr)T2

1
t ))⊗ d̃T

2
1

l ⊗ (⊗3
t=1(1̃	 ẽS

(pa)T2
1

t )),

R̃
T 2
2

l = D̃′(A2, A5)⊗ f̃T 2
2 ⊗ (⊗2

t=1(1̃	 ẽS
(pr)T2

2
t ))⊗ d̃T

2
2

l ⊗ (⊗3
t=1(1̃	 ẽS

(pa)T2
2

t )),

R̃
T 3
1

l = D̃′(A3, A5)⊗ f̃T 3
1 ⊗ (⊗4

t=1(1̃	 ẽS
(pr)T3

1
t ))⊗ d̃T

3
1

l ⊗ (⊗5
t=1(1̃	 ẽS

(pa)T3
1

t )),

R̃
T 4
1

l = D̃′(A4, A5)⊗ f̃T 4
1 ⊗ (⊗4

t=1(1̃	 ẽS
(pr)T4

1
t ))⊗ d̃T

4
1

l ⊗ (⊗5
t=1(1̃	 ẽS

(pa)T4
1

t )),

where D̃′(Ai, A5) is obtained from D̃(Ai, A5) by multiplying the initial value of each arc
by the reduction caused by the effect of failure transmission safeguards on that arc.

Table 2. Threats to the assets

Asset Threat (T i
j ) Frequency (f̃T i

j ) Degradation (d̃
T i
j )

A1 T 1
1 H (M, H, MH)

A2 T 2
1 M (H, M, MH)

A2 T 2
2 H (M, M, M)

A3 T 3
1 MH (H, H, M)

A4 T 4
1 H (H, MH, M)

Table 3. Risks to A5 before applying the safeguards

Threat Confidentiality Integrity Authenticity

T 1
1 (2898, 5622.7, 13449.1, 19500) (6210, 10620.7, 23230.3, 30000) (4554, 8121.7, 18339.7, 25500)

T 2
1 (2929.5, 5565.4, 13449.1, 19500) (1367.1, 2946.4, 7786.3, 12675) (2148.3, 4255.9, 10617.7, 16575)

T 2
2 (2929.5, 5565.4, 13449.1, 19500) (2929.5, 5565.4, 13449.1, 19500) (2929.5, 5565.4, 13449.1, 19500)

T 3
1 (3712.5, 7044.4, 17598.7, 25500) (3712.5, 7044.4, 17598.7, 25500) (1732.5, 3729.4, 10188.7, 16575)

T 4
1 (2362.5, 4876.9, 12905.7, 19500) (1732.5, 3729.4, 10188.7, 16575) (1102.5, 2581.9, 7471.7, 12675)

This optimization problem has 3×5 = 15 fuzzy risk elements in the objective function
and 2(32+22+16) = 1.18× 1021 possible solutions.

The initial solution considered in SA for solving this optimization problem consists
of randomly generated packages of failure transmission, preventive and palliative safe-
guards. The total cost of the initial solution obviously has to be below 5000 to be feasible.
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The neighborhood of a given solution xi, N(xi), is composed of any solutions whose
associated packages of safeguards differ by at most one safeguard randomly selected from
xi. If the resulting solution is not feasible, then it is discarded, and another solution is
generated in the neighborhood until a feasible solution is found (associated costs≤ 5000).

The initial temperature assures acceptance probabilities of worse solutions close to
0.9 in the initial iterations of the algorithm. The initial temperature is computed to obtain
a high probability of acceptance (≥ 0.9) of any neighbor of the initial solution, i.e., given
the initial solution x0, the minimum value T is computed such that e−(f(y)−f(x0))/T0 ≥
0.9,∀y ∈ N(x0). If we identify an upper bound for (f(y) − f(x0)), i.e., M ≥ f(y) −
f(x0), then T0 = −M/ln(0.9).

According to the Murakami ranking index, we can consider

M = maxi,j,l{x
R̃

Ti
j

l

}, (8)

which is obviously achieved when no safeguard is considered, leading toM = 19077 and
T0 = 181064.

The temperature is kept constant for L = 20 iterations and is then decreased after
multiplying by 0.9, so that, after h · L iterations, the temperature is Th·L = 0.9hT0. The
algorithm stops when there has been no improvement in the best solution over the last
30% of the total number of iterations.

Table 4. Failure transmission safeguards

Asset Safeguards (Tag, Effect, Cost)

A4 S45 = {(S45
1 ,M, 205), (S45

2 , L, 124), (S45
3 ,ML, 230), (S45

4 ,M, 189),

(S45
5 , L, 104), (S45

6 ,M, 167), (S45
7 ,M, 178), (S45

8 , L, 98)}
A3 S35 = {(S35

1 ,M, 198), (S35
2 , L, 100), (S45

3 ,M, 123), (S35
4 ,M, 167),

(S35
5 , L, 89), (S35

6 ,M, 178), (S35
7 ,M, 209), (S35

8 , L, 100)}
A2 S25 = {(S25

1 ,M, 203), (S25
2 ,M, 198), (S25

3 , L, 170)}
S23 = {(S23

1 , L, 143), (S23
2 ,M, 178), (S23

3 ,M, 154), (S23
4 ,M, 190), (S23

5 , L, 102)}
A1 S14 = {(S14

1 ,M, 178), (S14
2 ,M, 160), (S14

3 , L, 120), (S14
4 , L, 105)}

S12 = {(S12
1 , L, 120), (S12

2 ,M, 180), (S12
3 , L, 104), (S12

4 ,M, 200)}

Fig. 3 shows the fitness function trajectory of SA for this problem, in which the cen-
troid of the maximum risk declines to 4044. Note that the centroid before the implemen-
tation of safeguards was 19077. Table 6 shows the solutions output, whose associated
cost is 4850 monetary units, whereas Table 7 shows the new risk values once the selected
safeguards are implemented.

If we compare the risk values for the terminal asset A5 in Tables 3 and 7, i.e., before
and after the implementation of the selected safeguards, we find that the risk reduction
is significant. The maximum risk is associated with threat T 1

1 both before and after the
implementation of the selected safeguards, but the sum of the centroids of each component
are 48.560 and 10.373 monetary units, respectively.

Note that the risks for the whole IS are the same as for asset A5, since it is the only
terminal asset.
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Table 5. Preventive and palliative safeguards

Palliative Safeguards (Tag, Effect (C, I, A), Cost)

ST1
1 pa {(ST1

1 pa

1 , (H,H,H), 520), (S
T1
1 pa

2 , (M,L,M), 250), (S
T1
1 pa

3 , (L,L, V L), 100),

(S
T1
1 pa

4 , (ML,V L,L), 96), (S
T1
1 pa

5 , (V L,L,ML), 110), (S
T1
1 pa

6 , (ML,M,L), 78)}

ST3
1 pa {(ST3

1 pa

1 , (H,H,H), 535), (S
T3
1 pa

2 , (L,L, V L), 89), (S
T1
1 pa

3 , (H,H,H), 670),

(S
T3
1 pa

4 , (ML,H,L), 537), (S
T3
1 pa

5 , (H,L,ML), 477)}

ST2
1 pa {(ST2

1 pa

1 , (H,H,H), 496), (S
T2
1 pa

2 , (V L,L,ML), 110), (S
T2
1 pa

3 , (ML,M,L), 78)}

ST2
2 pa {(ST2

2 pa

1 , (M,L,M), 195), (S
T2
2 pa

2 , (L,L, V L), 89), (S
T2
2 pa

3 , (ML,V L,L), 56)}

ST4
1 pa {(ST3

4 pa

1 , (H,H,H), 539), (S
T4
1 pa

2 , (L,L, V L), 110), (S
T4
1 pa

3 , (ML,H,L), 478),

(S
T4
1 pa

4 , (ML,H,L), 495), (S
T4
1 pa

5 , (H,H,H), 689)}
Preventive Safeguards (Tag, Effect, Cost)

ST1
1 pr {(ST1

1 pr

1 , H, 367), (S
T1
1 pr

2 , H, 485), (S
T1
1 pr

3 ,ML, 100), (S
T1
1 pr

4 ,ML, 120)}

ST3
1 pr {(ST3

1 pr

1 ,M, 198), (S
T3
1 pr

2 , L, 100), (S
T1
1 pr

3 ,M, 123), (S
T3
1 pr

4 ,M, 167)}

ST2
1 pr {(ST2

1 pr

1 ,M, 203), (S
T2
1 pr

2 ,M, 198)}

ST2
2 pr {(ST2

2 pr

1 ,M, 178), (S
T2
2 pr

2 ,M, 160)}

ST4
1 pr {(ST3

4 pr

1 ,M, 178), (S
T4
1 pr

2 ,M, 160), (S
T4
1 pr

3 , L, 120), (S
T4
1 pr

4 , L, 105)}

Table 6. Final selection of failure transmission, preventive and palliative safeguards

Arc Failure transmission safeg. Threat Preventive safeg. Palliative safeg.

(A4, A5) (10100111) T 1
1 (0011) (000011)

(A3, A5) (10111110) T 2
1 (00) (110)

(A2, A5) (110) T 2
2 (00) (101)

(A2, A3) (01111) T 3
1 (0010) (00000)

(A1, A4) (0100) T 4
1 (0100) (00000)

(A1, A2) (0101)

Table 7. Risks to A5 after the implementation of the selected safeguards

Threat Confidentiality Integrity Authenticity

T 1
1 (16.9, 161.72, 936.2, 3681.5) (32.70, 239.7, 1295.6, 5197.4) (25.1, 198.6, 1576.7, 5777.1)

T 2
1 (0, 49.6, 458.1, 1791.2) (0, 29.7, 289.7, 1397.1) (0, 24.6, 352.6, 1552.9)

T 2
2 (0, 49.6, 458.1, 1791.2) (0, 29.7, 289.7, 1397.1) (76, 379.3, 2074.3, 5588.4)

T 3
1 (12.2, 110.5, 647.2, 2465.6) (21.9, 147.3, 744.3, 2958.7) (6.8, 58.5, 487.1, 1923.2)

T 4
1 (34.8, 245.5, 1176.8, 3793.2) (62.7, 327.4, 1353.3, 4551.9) (19.5, 129.9, 885.7, 2958.7)
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Fig. 3. Centroid of the maximum risk evolution

5. Conclusions

The selection of failure transmission, preventive and palliative safeguards that minimize
the maximum risk caused by threats to the assets of an information system (IS) for a
given budget is a combinatorial optimization problem, which has to be solved by means
of a metaheuristic.

Moreover, we have assumed that all the elements in the IS risk analysis can be rated
using linguistic terms with associated normalized fuzzy numbers. This is less stressful on
experts and useful for accounting for imprecision and/or vagueness concerning the ele-
ments. However, this involves the inclusion of fuzzy elements in the optimization prob-
lem, such as the ranking of fuzzy numbers to derive a total order in the objective function.
We have modeled this optimization problem, which we have solved by means of simulated
annealing.

As discussed in the paper, assignments based on a rigid linguistic term scale is not
always advisable since the expert has no say in the number of linguistic terms that the
scale is to include and about the appearance of their associated trapezoidal fuzzy numbers.
This could be considered as a limitation of the proposed approach. However, we have
alternatively proposed the use of a betting and lottery-based method for fuzzy probability
elicitation. In the future, we intend to work on procedures for building a linguistic term
scale that represents the expert’s preferences.

Besides, we have assumed that the threat frequencies are represented by linguistic
terms (trapezoidal fuzzy numbers). However, these frequencies might change depending
on a number of variables in the context of the IS. In the future we intend to build a fuzzy
control system to establish different alarm levels according to these variable values.

Acknowledgments. The paper was supported by Madrid Government project S-2009/ESP-1685
and the Ministry of Science project MTM2011-28983-CO3-03 and MTM2014-56949-C3-2-R.
This paper is an extension of reference [26] presented at the 2014 World Conference on Information
Systems and Technologies (WorldCIST’14) in Madeira (Portugal), January 2014.
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Intelligence at the University Politécnica de Madrid and he is working in Sopra Group.

His research lines are Decision Sciences, Risk Analysis, Statistics and Operational
Research and Big Data. He has written more than 10 papers (3 of them listed in JCR), such
as Knowledge-based Systems, Computer Science and Information Systems or Journal of



Fuzzified Risk Management: Selection of Safeguards to Minimize the Maximum Risk 585

Intelligent & Fuzzy Systems. He has participated in 2 research projects and was reader of
a paper 4 times in conferences.

Prof. Dr. Alfonso Mateos Caballero is an Associate Professor of Statistics and Opera-
tions Research at the Artificial Intelligence Department (ETSI Informática, Universidad
Politécnica de Madrid). He is director of the Decision Analysis and Statistics Group. All
his professional life has been related to Operations Research, Statistics, Decision Analy-
sis and Decision Support Systems. He has written more than 120 papers in Spanish and
International journals (20 of them listed in JCR), such as EJOR, Computational Optimiza-
tion and Applications, Annals of Operations Research, JORS, Reliability Engineering and
System Safety, DSS, GDN, Computers & Operations Research, OMEGA or Knowledge-
based Systems. He has directed 5 and has participated in more than 26 projects (4 of them
are European Projects), has co-authored 5 books and was reader of a paper more than 125
times in conferences.

His research is currently involved in the development of Intelligent Decision Support
Systems based on Bayesian forecasting and time series analysis, influence diagrams and
multi-attribute utility theory, with applications in price forecasting in the Spanish electric
market, extracorporeal life support (medicine), restoring radionuclide contaminated fresh
water ecosystem (environment) and valuation forecasting of real estate, risk analysis and
management and Big Data.
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