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Abstract. Graph embedding aims at learning representations of nodes in a low di-
mensional vector space. Good embeddings should preserve the graph topological
structure. To study how much such structure can be preserved, we propose eval-
uation methods from four aspects: 1) How well the graph can be reconstructed
based on the embeddings, 2) The divergence of the original link distribution and
the embedding-derived distribution, 3) The consistency of communities discovered
from the graph and embeddings, and 4) To what extent we can employ embeddings
to facilitate link prediction. We find that it is insufficient to rely on the embeddings
to reconstruct the original graph, to discover communities, and to predict links at
a high precision. Thus, the embeddings by the state-of-the-art approaches can only
preserve part of the topological structure.

Keywords: graph embedding, network representation learning, graph reconstruc-
tion, dimension reduction, graph mining.

1. Introduction

Graphs (also known as networks) are used in many branches of science as a way to rep-
resent the patterns of connections between the components of complex systems [48]. Re-
cently, there has been a surge of interest in graph embedding that learns low-dimensional
vector representations, or embeddings, for nodes to encode their structural information in
the original graph [23,3,20,75]. After the embeddings are learned, graph analysis can be
easily and efficiently carried out by applying off-the-shelf vector-based machine learning
algorithms [59,58,68,6,78,21,56].

It is believed that the topological structure information should, to some extent, be
preserved by the embeddings that are obtained by the state-of-the-art approaches. But
how well is it preserved? This question is not yet investigated and this paper intends to
answer them. In this paper, we propose four evaluation methods to evaluate the amount
of information preserved by the embeddings. First, we investigate how well the graph

? This paper is an extension of the conference version [40].
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Fig. 1. An illustration of graph embedding.

can be reconstructed by the embeddings. Secondly, we study the divergence between the
link distribution in the graph and the distribution derived from the embeddings. Thirdly,
we focus on the difference between the communities discovered from the graph and the
embeddings. Finally, we examine the effectiveness of embeddings for facilitating link
prediction. We found that the current graph embedding approaches can only preserve part
of the topological structure. It is insufficient to rely on the embeddings to reconstruct the
original graph, to discover communities, and to predict links at a high precision.

The rest of the paper is organized as follows. Section 2 presents the definition of graph
embedding. Section 3 proposes our methods in detail. Section 4 reports the experiment re-
sults for different graph embedding techniques based on the proposed evaluation methods.
Section 5 surveys related work. Finally, Section 6 gives our conclusion.

2. Preliminaries and Definition of Graph Embedding

This section gives definitions of graph embedding. We begin with the symbols that will
be used. Let us consider a simple graph G = (V, E), where V = {vi | i = 1, · · · , n} is the
node set, and E ⊆ V ×V is the edge set. We simply suppose the edge weight is uniformly
1. The adjacency matrix of G is denoted as A, with elements

Aij =

{
1 if (vi, vj) ∈ E ;
0 otherwise.

(1)

ki =
∑n

j=1Aij is the degree of vi.
Definition: Given a graph G = (V, E), graph embedding is a mapping φ: vi 7→ ei ∈

Rd for ∀i = 1, . . . , n, such that d � n and the embeddings maximally preserve the
structure of graph.

The most basic structure that should be preserved is the topological structure. That is,
if there is a link between vi and vj , the corresponding embeddings ei and ej should be
close to each other in the low dimension vector space, as shown in Figure 1.

3. Evaluating How Much Structure Are Preserved

In this section we propose four evaluation methods for studying how much graph structure
are preserved by the embeddings. Our methods are carried out from four aspects: 1) graph
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Fig. 2. The two steps for the graph similarity based evaluation.

reconstruction based on the embeddings, 2) the divergence of the original link distribution
and the embedding-derived distribution, 3) the consistency of communities discovered
from the graph and embeddings, and 4) link prediction based on the embeddings. We will
present them in the following.

3.1. Graph Reconstruction based on Embeddings

To evaluate how much topological structure information is preserved by the embeddings,
we can use the embeddings to reconstruct a graph and examine the difference between the
reconstructed graph and the original one. Following this idea, we propose an evaluation
method based on the similarity of the two graphs. Our method contains two steps as
illustrated in Figure 2. The first step is reconstructing the graph based on the embedding.
The second step is calculating the similarity between the reconstructed graph and the
original graph.

Reconstructing the Graph Given the embeddings {ei | i = 1, · · · , n}, the similarity
function for a pair of embeddings SIM(ei, ej) : (ei, ej) → R, and the node degree
sequence {ki | i = 1, · · · , n} of the original graph, we take the following procedure to
obtain the reconstructed graph G′.

1. G′ keeps the same node set {vi | i = 1, · · · , n} as G.
2. For each vi whose degree is ki in G, create ki links connecting vi and the nodes whose

corresponding embeddings are among the ki most similar embeddings to ei, with the
weight of each link equal to 0.5.

SIM(ei, ej) quantifies the similarity of ei and ej in the embedding space, and is
dependent on the approach for generating the embeddings. For example, if an approach
expresses the similarity by dot product, the similarity function would be based on dot
product.

Note that for each created link we attach a weight of 0.5. This is because the link
creation is a mutual process, i.e., for vi we create a link to vj , and for vj we may create
another link to vi. As a result, G′ keeps the same number of weights as G.

Also note that G′ can be exactly the same as G under the condition that for each node
vi, the ki most similar embeddings of ei exactly correspond to the neighbor nodes of vi.
Therefore, if the embeddings are good enough we can perfectly reconstruct the graph.
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Evaluating the Graph Similarity Good embeddings that well preserve the topological
structure will result in that the reconstructed graph G′ is similar to the original graph G.
Thus, we can evaluate the amount of preserved information by calculating the similarity
between G and G′. Specifically, we use DELTACON [32,31] as a metric to measure the
similarity. DELTACON is scalable to large graphs and obeys the following axioms

– Identity Property: DELTACON(G,G′) = 1 iff G = G′.
– Symmetric Property: DELTACON(G,G′) = DELTACON(G′,G).
– Zero Property: DELTACON(G,G′) → 0 for n → ∞, where G is the complete graph,

and G′ is the empty graph (i.e., the edge sets are complementary).

DELTACON essentially measures the differences in the corresponding node’s affinity
of G and G′, and thus it is based on global structure of the graphs. Specifically, the cal-
culation of DELTACON(G, G′) contains three steps. First, we calculate the node affinity
matrices S and S′ for G and G′, respectively. The node affinity matrix S can be expressed
as

S = (I+ ε2D− εA)−1, (2)

where ε is a positive constant encoding the influence between neighbors in G, and D is
the degree diagonal matrix, with elements

Dij =

{
ki if i = j;

0 otherwise.
(3)

The element Sij indicate the affinity (influence) of node vi to vj in G. Similarly, we
calculate the node affinity matrix S′ for G′. Secondly, we calculate the root Euclidean
distance between S and S′.

ROOTED(S,S′) =

√∑
i,j

(Sij − S′ij)2 (4)

Finally, we have

DELTACON(G,G′) = 1

1 + ROOTED(S,S′)
. (5)

DELTACON(G, G′) ∈ [0, 1]. On the one extreme, a score of 0 implies that G′ is totally
irrelevant of G, implying that none of the topological structure information is preserved in
the embeddings. On the other extreme, a score of 1 indicates that G′ is a perfect reconstruc-
tion of G, implying that the topological structure are 100% preserved in the embeddings.
Intermediate scores suggest situations in between the two extremes.

The graph reconstruction procedure requires a quadratic time complexity, since we
need to calculate SIM(ei, ej) for each pair of embeddings. Given the original graph and
the reconstructed graph, the calculation of DELTACON(G, G′) needs another quadratic
time complexity [32,31]. Therefore, the whole evaluation method requires O(n2) com-
plexity.
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3.2. Divergence of the Original and Embedding-Derived Link Distributions

Our second method is to evaluate the KL Divergence between the link distribution derived
from the embeddings and the empirical distribution observed from the original graph.
Given the embeddings {ei | i = 1, · · · , n} and their similarity function SIM(ei, ej), we
can define a link distribution

P e(vi, vj) ∝
1

1 + exp(−SIM(ei, ej))
. (6)

The idea is that the more similar ei and ej are, the more likely a link will exist between
vi and vj . This is the link distribution derived from the embeddings. On the other hand,
the empirical link distribution observed from the original graph is

P g(vi, vj) =
Aij∑
i<j Aij

. (7)

P e and P g are distributions defined over the space V × V . We can employ the KL-
divergence [33]

KL(P e, P g) = −
∑
vi,vj

P e(vi, vj)logP
g(vi, vj) +

∑
vi,vj

P e(vi, vj)logP
e(vi, vj) (8)

to measure the distance between the two distributions. KL(P e, P g) approaching 0 indi-
cates that the topological structure are well preserved in the embeddings.

Note that the calculation of P g needs a linear time complexity, while the the calcu-
lation of P e needs a quadric time complexity. As a result, the total complexity for this
evaluation method is O(n2).

3.3. Consistency of Communities Discovered from the Graph and Embeddings

Good embeddings should also preserve the mesoscopic graph structure, i.e., the commu-
nity structure (clusters). Therefore, the third method for evaluating how well the topolog-
ical structure is preserved is to measure the consistency of communities discovered from
the original graph and from embeddings. Specifically, we employ the Louvain algorithm
[1] and the K-Means algorithm [42] to discover the communities from the graph and em-
beddings, respectively 3. Then, we estimate the consistency of the communities based on
the Normalized Mutual Information (NMI) [17,12] and Adjusted Rand Index (ARI) [27].

SupposeΩg andΩe are community partitions for the graph and embeddings (node/embedding
community label assignments). NMI is an information theoretic measure that calculates
the amount of common information between two partitions:

NMI(Ωg, Ωe) =

− 2
cg∑
i=1

ce∑
j=1

ngeij log(n
ge
ij n/n

g
i n

e
j)

cg∑
i=1

ngi log(n
g
i /n) +

ce∑
j=1

nej log(n
e
j/n),

(9)

3 Note that we never know the true community structure. Hence we choose the most popular and widely
accepted algorithms for detecting the communities.
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where cg is number of communities in Ωg , ce is number of communities in Ωe, n is the
total number of nodes, ngi is the number of nodes in the i-th community of Ωg , nej is the
number of nodes in the j-th community of Ωe, and ngeij is the number of nodes that are
both in the i-th community of Ωg and the j-th community of Ωe. If Ωg and Ωe match
completely, we have a maximum NMI value of 1.0, whereas if Ωg and Ωe are totally
independent of one another, we have a minimum NMI value of 0.0.

On the other hand, ARI computes a similarity by considering all pairs of samples and
counting pairs that are assigned in the same or different communities in Ωg and Ωe. The
mathematical definition of ARI is

ARI(Ωg, Ωe) =

cg∑
i=1

ce∑
j=1

(nge
ij

2

)
−

[
cg∑
i=1

(
ng
i
2

) ce∑
j=1

(ne
j

2

)]
/
(
n
2

)
1
2

[
cg∑
i=1

(
ng
i
2

) ce∑
j=1

(ne
j

2

)]
−

[
cg∑
i=1

(
ng
i
2

) ce∑
j=1

(ne
j

2

)]
/
(
n
2

) . (10)

The ARI has the maximum value 1 when Ωg and Ωe agree perfectly, and its expected
value is 0 in the case that Ωg and Ωe are totally independent of one another. A larger ARI
means a higher agreement between Ωg and Ωe.

The Louvain algorithm has time complexity of O(nlogn), while the K-Means al-
gorithm has time complexity of O(ncedl), where l is the number of iterations for the
algorithm to converge. Moreover, the calculation of NMI and ARI has time complexity
O(n2max(cg, ce)) in the worst case. Note that cg, ce, d, l � n and thus can be ignored.
Consequently, the total complexity for this evaluation method is O(n2).

3.4. Link Prediction Based on Embeddings

Finally, we evaluate the effectiveness of the embeddings for facilitating link prediction.
This is based on the following idea: Suppose embeddings can well preserve the graph
topological structure; If we remove a small amount of the topology information of the
original graph, the resulting embeddings should still keep the main structure of the graph
somehow; Therefore, we can use the embedding to facilitate the recovery of some of the
removed information, i.e., link prediction.

Specifically, given a graph G we remove 10% of the links and obtain G′. We test how
the embeddings learned from G′ can help predict the removed links. Suppose we focus
on vi, and (vi, vj) is a removed link that we aim to predict. Also note that SIM(ei, ek)
is the score for predicting (vi, vk) for ∀ vk. Then, given the query (vi, vj), we can rank
vj against all other nodes 4 based on the scores. A high rank for vj indicates that we are
able to predict (vi, vj) in a positive sense. Finally, we evaluate the performance for all the
queries based on Mean Reciprocal Rank (MRR) [53] and HITS@K:

4 We filter out the nodes vk that already has a link (vi, vk) in G′.
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MRR =
1

|Q|

|Q|∑
t=1

1

Rankt
(11)

HITS@K =
1

|Q|

|Q|∑
t=1

Hitst (12)

Hitst =

{
1 if Rankt ≤ K;

0 otherwise.
(13)

where Q is the set of queries, Rankt refers to the rank position of vj for the t-th query
(vi, vj). MRR ∈ (0, 1] and HITS@K ∈ [0, 1]. A maximum value of 1.0 implies we can
predict all the links perfectly.

For a query (vi, vj), the procedure for ranking vj against all other nodes requires a
time complexity of O(n). Therefore, the total complexity for this evaluation method is
O(|Q|n).

4. Experiment

In this section, we show the results based on the proposed evaluation methods. We con-
sider the following graph embedding approaches that represent the state-of-the-art.

– GraRep (GRep) [4]: This approach defines a loss function by integrating the transition
probabilities. Minimizing this loss function has proven to be equivalent to factorizing
a matrix that is related to the k-step transition probability matrix. For each k the
factorization produces a sub-embedding. Then it concatenates sub-embeddings on
different k as the final embedding solution.

– HOPE [50]: This approach learns embeddings by factorizing the Katz similarity [29]
matrix. It uses generalized Singular Value Decomposition algorithm to obtain the
embeddings efficiently.

– DeepWalk (DW) [51]: This approach first transforms a graph into a collection of
linear sequences of nodes using multiple random walks. It then learns embeddings by
applying the Skip-Gram model [46,47], originating from natural language processing,
to the node sequence.

– Node2Vec (N2V) [21]: This approach is a variant of DeepWalk. It also samples node
sequences and feed them to the Skip-Gram model. Instead of DeepWalk’s random
search sampling strategy, Node2Vec uses 2nd-order random walks that can bias to-
wards a particular search strategy.

– LINE [57]: This approach learns d-dimensional embeddings in two separate phases.
In the first phase, it learns d/2 dimensions by BFS-style simulations over immediate
neighbors of nodes. In the second phase, it learns the next d/2 dimensions by sam-
pling nodes strictly at a 2-hop distance from the source nodes. Finally, it concatenates
the embeddings learned at the two phases.

– GRA [41]: This approach learns embeddings by factorizing a Global Resource Al-
location similarity matrix that is an extension of the Katz and Resource Allocation
similarities [80].
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Table 1. Statistics of the datasets: number of nodes |V|; number of edges |E|.

Dataset |V| |E|

Kaggle3059 157 2,474
Kaggle4406 399 3,412
BrazilAir 131 1,003
EuropeAir 399 5,993
USAir 1,190 13,599
Cora 2,708 5,278
Citeseer 3,264 4,551
DBLP 13,184 47,937
WikiPage 2,363 11,596
WikiWord 4,777 92,295
PPI 3,860 37,845
BlogCatalog 10,312 333,983

According to the mechanism of these approaches, the embeddings’ similarity fuction can
be uniformly expressed as

SIM(ei, ej) = e>i ej . (14)

In addition, we consider randomly generated embeddings as a baseline. We do not
include approaches for supervised graph embedding because they require additional in-
formation such as node labels for training [74,61,63,30].

We set the embedding dimension as 120 for all approaches. Moreover, the parameter
settings for these approaches are the same as the original literature. Specifically, for Deep-
Walk and Node2Vec, we set the window size to 10, the walk length to 80, and the number
of walks per node to 10. For HOPE and GRA, we set the decay rate to 0.95 divided by the
spectral radius of A and AD−1, respectively. For LINE, we set the number of negative
samples to 5. For GraRep, we set the maximum transition step to 6. Lastly, for Node2Vec,
we obtain the best in-out and return hyperparameters based on a grid search over {0.25,
0.50, 1, 2, 4}.

We use a variety of real-world graphs from various domains as the testing datasets. A
brief description of them follows.

– Kaggle3059 [8]5, Kaggle4406 [8]3: Graphs representing the friendship of Facebook
users.

– BrazilAir [55]6, EuropeAir [55]7, USAir [55]8: Graphs representing the air traffics in
Brazil, Europe, and the USA, respectively. Nodes correspond to airports and edges
denote the existence of commercial flights.

– Cora [72]9, Citeseer [30]7, DBLP [56]10: Graphs representing the citation relationship
of scientific papers.

5 https://www.kaggle.com/c/learning-social-circles/data
6 http://www.anac.gov.br/
7 http://ec.europa.eu/
8 https://transtats.bts.gov/
9 https://linqs.soe.ucsc.edu/data/

10 https://aminer.org/billboard/citation/
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Table 2. DELTACON scores for different approaches (the higher the better).

Dataset Approaches

Random GRep HOPE LINE GRA DW N2V

Kaggle3059 0.2911 0.5687 0.4673 0.4677 0.5074 0.3830 0.4083
Kaggle4406 0.3780 0.5640 0.5445 0.5831 0.5947 0.4658 0.5289
BrazilAir 0.3522 0.4448 0.4624 0.3744 0.5458 0.3625 0.3857
EuropeAir 0.3814 0.4592 0.4085 0.4125 0.4522 0.4333 0.4542
USAir 0.3532 0.4774 0.4010 0.3830 0.4862 0.3898 0.4231
Cora 0.4259 0.4880 0.5408 0.6099 0.5556 0.5516 0.6146
Citeseer 0.4280 0.4681 0.5384 0.5730 0.5522 0.5510 0.6202
DBLP 0.4001 0.4855 0.4947 0.5255 0.5064 0.5512 0.5907
WikiPage 0.4008 0.5280 0.5510 0.5777 0.5610 0.5407 0.5564
WikiWord 0.4051 0.4752 0.4746 0.4830 0.5068 0.5022 0.5168
PPI 0.3999 0.4753 0.4903 0.4945 0.5052 0.5102 0.5223
BlogCatalog 0.3882 0.4579 0.4700 0.4495 0.4794 0.4746 0.4838

Table 3. KL-divergence scores for different approaches (the lower the better).

Dataset Approaches

Random GRep HOPE LINE GRA DW N2V

Kaggle3059 1.6519 1.2567 1.5330 1.5347 1.5068 1.5229 1.5170
Kaggle4406 3.2092 2.6315 3.0915 3.0773 2.9063 3.0967 3.1023
BrazilAir 2.2033 1.9945 2.0438 2.0890 2.1268 2.1258 2.1119
EuropeAir 2.6476 2.4191 2.5451 2.5748 2.5616 2.5327 2.5126
USAir 4.0158 3.5418 3.9185 3.9315 3.8230 3.8590 3.8406
Cora 6.6088 5.9681 6.5171 6.5020 6.2449 6.5199 6.5378
Citeseer 7.1230 6.5599 7.0393 6.9926 6.7138 7.0588 7.0621
DBLP 7.5638 6.9417 7.4929 7.5001 7.2152 7.4774 7.4936
WikiPage 5.5452 4.9841 5.4620 5.4642 5.3207 5.3809 5.4388
WikiWord 4.9990 4.6942 4.8085 4.8823 4.8139 4.7442 4.7234
PPI 5.3436 4.9735 5.2719 5.2673 5.2381 5.1422 5.1680
BlogCatalog 5.2800 4.8913 5.0656 5.0847 5.0431 5.0068 4.9814

– WikiPage [61]11: A graph of webpages in Wikipedia, with edges indicating hyper-
links.

– WikiWord [21]12: A co-occurrence graph of words appearing in Wikipedia.
– PPI [21]8: A protein-protein interaction graph for Homo Sapiens.
– BlogCatalog [58,8]13: A graph of social relationships of the bloggers listed on the

BlogCatalog website.

Table 1 summarizes the number of nodes and edges in each dataset. Table 2 lists the
DELTACON for graph reconstruction. Table 3 presents the KL-divergence of the original

11 https://github.com/thunlp/MMDW/tree/master/data/
12 http://snap.stanford.edu/node2vec/#datasets/
13 http://socialcomputing.asu.edu/datasets/BlogCatalog3/
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Table 4. NMI scores for different approaches (the higher the better).

Dataset Approaches

Random GRep HOPE LINE GRA DW N2V

Kaggle3059 0.0839 0.7595 0.5454 0.7190 0.7272 0.7585 0.7755
Kaggle4406 0.1397 0.8792 0.5422 0.8530 0.9014 0.8692 0.9452
BrazilAir 0.0713 0.4893 0.0992 0.1781 0.3097 0.3660 0.4626
EuropeAir 0.0165 0.5725 0.1471 0.7049 0.4602 0.6161 0.6632
USAir 0.0349 0.6077 0.2250 0.5974 0.6149 0.6055 0.6524
Cora 0.1919 0.6592 0.4280 0.6218 0.7452 0.7099 0.7229
Citeseer 0.5153 0.6108 0.4371 0.7721 0.8825 0.8192 0.8272
DBLP 0.0110 0.6315 0.2515 0.5581 0.7186 0.6819 0.7072
WikiPage 0.0270 0.6287 0.2488 0.5863 0.6163 0.6323 0.6827
WikiWord 0.0033 0.1833 0.0346 0.1676 0.0599 0.1661 0.1824
PPI 0.0091 0.4163 0.0866 0.3746 0.3528 0.4002 0.4275
BlogCatalog 0.0010 0.5220 0.0088 0.3697 0.3331 0.5221 0.5478

Table 5. ARI scores for different approaches (the higher the better).

Dataset Approaches

Random GRep HOPE LINE GRA DW N2V

Kaggle3059 0.0129 0.6126 0.3320 0.5528 0.5277 0.5157 0.5352
Kaggle4406 0.0027 0.7543 0.1189 0.6697 0.7784 0.7226 0.8986
BrazilAir 0.0236 0.4083 0.0329 0.0885 0.1531 0.1881 0.2963
EuropeAir -0.0002 0.4179 0.0861 0.5641 0.1565 0.4477 0.5096
USAir 0.0000 0.3676 -0.0164 0.3529 0.3612 0.3416 0.5051
Cora 0.0001 0.2242 0.0107 0.1870 0.4114 0.2628 0.2922
Citeseer 0.0002 0.0066 -0.0232 0.1245 0.3820 0.1787 0.1966
DBLP 0.0000 0.3995 0.0093 0.2953 0.5848 0.4721 0.4910
WikiPage 0.0014 0.4537 0.0180 0.3816 0.4346 0.4539 0.5435
WikiWord 0.0004 0.1481 0.0183 0.1150 0.0706 0.1101 0.1348
PPI -0.0001 0.3159 0.0039 0.2829 0.2483 0.3324 0.3390
BlogCatalog -0.0001 0.4430 -0.0120 0.2892 0.3145 0.4524 0.4681

and embedding-derived link distributions. Table 4 and Table 5 report the NMI and ARI
for the consistency of the communities discovered from graph and embeddings. Table 6
and Table 7 reveal the MRR and HITS@K 14 for link prediction based on embeddings.
Based on these results, we have the following observations.

– The DELTACON for evaluating graph reconstruction reveals that GraRep and GRA
are more successful in smaller graphs such as Kaggle3059, Kaggle4406, BrazilAir,
EuropeAir, and USAir. On the other hand, Node2Vec outperforms the others in 6
larger graphs including Cora, Citeseer, DBLP, WikiWord, PPI, and BlogCatalog, but
shows less success in the other graphs (especially in Kaggle3059 and BrazilAir). This

14 We only review the result for K=10 since we experience similar behaviors for other values of K.
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Table 6. MRR scores for different approaches (the higher the better).

Dataset Approaches

Random GRep HOPE LINE GRA DW N2V

Kaggle3059 0.0454 0.5109 0.5414 0.4473 0.5791 0.1041 0.1225
Kaggle4406 0.0163 0.4135 0.4270 0.4789 0.5213 0.1212 0.1535
BrazilAir 0.0621 0.3682 0.4816 0.1274 0.4935 0.0573 0.0845
EuropeAir 0.0194 0.1256 0.1744 0.1216 0.2281 0.0207 0.0272
USAir 0.0091 0.2359 0.2883 0.1550 0.3818 0.0160 0.0181
Cora 0.0038 0.2587 0.1782 0.6701 0.2071 0.1669 0.1727
Citeseer 0.0015 0.2133 0.1945 0.5825 0.1999 0.1493 0.1577
DBLP 0.0008 0.1359 0.0880 0.2809 0.1072 0.0386 0.0508
WikiPage 0.0031 0.2849 0.2421 0.4402 0.2925 0.1289 0.1353
WikiWord 0.0022 0.0485 0.0239 0.0529 0.0469 0.0048 0.0061
PPI 0.0019 0.0726 0.0586 0.1091 0.0778 0.0045 0.0055
BlogCatalog 0.0013 0.0210 0.0163 0.0063 0.0220 0.0011 0.0012

is because that Node2Vec uses two hyperparameters to control the search strategy and
this enables it to learn long-term dependencies in larger graphs.

– The KL-divergence for evaluating the divergence of the original and embedding-
derived link distribution suggests that GraRep demonstrates the best performance in
all of the graphs. A main reason is that GraRep is adapt in separating the embeddings
of dissimilar nodes, i.e., putting the embeddings of dissimilar nodes far away from
each other. Eq. (6) indicates that in the derived link distribution there is a probability
for each pair of nodes, while Eq. (7) implies that in the empirical link distribution
only a few pairs of nodes have link probability. Therefore, properly separating the
embeddings of dissimilar nodes will help achieve a better KL-divergence score.

– The NMI for evaluating the consistency of the communities discovered from graph
and embeddings indicates that Node2Vec achieves good results in Kaggle3059, Kag-
gle4406, USAir, Cora, Citeseer, WikiPage graphs. A common feature of these graph
is that they are unconnected. This means that the graph is naturally separated into sev-
eral communities, each representing a connected component. Therefore, the commu-
nity partitions by graph and embeddings can easily reach a relatively high agreement
for a unconnected graph, and contribute to the high NMI scores. On the other hand,
the ARI scores are more strict on the exact partition of a large connected component
into small communities. Hence, the ARI scores are much lower than NMI scores.
For example, Node2Vec obtains NMI scores of 0.7229 and 0.8272 on Cora and Cite-
seer graphs, while the corresponding ARI scores are as low as 0.2922 and 0.1966,
respectively.

– The MRR and HITS@10 for evaluating the embedding-based link prediction indicate
the similar performance patterns. LINE and GRA outperforms the other approaches
by a large margin. For example, GRA achieves passable performance in Kaggle3059,
Kaggle4406, and BrazilAir graphs, while LINE delivers an acceptable performance
in Cora and Citeseer graphs.

– The performances are graph-dependent. For example, although LINE exhibits good
performances in 6 graphs for link prediction, it is far below the other approaches
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Table 7. HITS@10 scores for different approaches (the higher the better).

Dataset Approaches

Random GRep HOPE LINE GRA DW N2V

Kaggle3059 0.0907 0.7923 0.8226 0.8065 0.8367 0.2359 0.2500
Kaggle4406 0.0278 0.7149 0.7398 0.7339 0.7865 0.2573 0.3260
BrazilAir 0.1535 0.5891 0.7574 0.2178 0.7772 0.1040 0.1634
EuropeAir 0.0300 0.2508 0.3567 0.2025 0.4767 0.0267 0.0392
USAir 0.0129 0.3974 0.4551 0.2471 0.5882 0.0287 0.0294
Cora 0.0047 0.4498 0.3438 0.9290 0.3835 0.3314 0.3371
Citeseer 0.0000 0.4221 0.3739 0.8816 0.3849 0.2807 0.3048
DBLP 0.0005 0.2781 0.1845 0.5541 0.2252 0.0782 0.1049
WikiPage 0.0047 0.4664 0.3935 0.6543 0.4677 0.2138 0.2259
WikiWord 0.0022 0.0870 0.0369 0.0954 0.0912 0.0066 0.0093
PPI 0.0024 0.1312 0.1004 0.2020 0.1466 0.0053 0.0074
BlogCatalog 0.0018 0.0393 0.0295 0.0112 0.0409 0.0012 0.0013

in another two graphs (BrazilAir and EuropeAir). Similarly, GRA dramatically out-
performs the others for community discovery in graphs such as Cora, Citeseer, and
DBLP. However, it is less successful in graphs such as BrazilAir and WikiWord.

– The performances are also task-dependent. For example, GraRep consistently outper-
forms the others in all of the 12 graphs for KL-divergence scores, but it just puts in
an average performance in the other three tasks. Similarly, Node2Vec demonstrates
acceptable performance in graph reconstruction and community discovery, but it con-
spicuously fails in link prediction.

– The DELTACON, KL-divergence, NMI, ARI, MRR, and HITS@10 scores all indicate
that graph embedding approaches are significantly outperforms the randomly gener-
ated embeddings. However, they are far from perfect. For example, the DELTACON
scores mostly range between 0.4 and 0.6, but none of the approaches obtains scores
closing to 1.0. NMI and ARI scores in graphs such as BrazilAir and WikiWord in-
dicates that the embedding communities are quite different from graph communities.
Moreover, the MRR and HITS@10 scores in large graphs such as WikiWord, PPI,
and BlogCatalog imply that embeddings are not always trustworthy for link predic-
tion. Therefore, the embeddings preserve only part of the topological structure of the
graph. It is insufficient to rely on the embeddings to reconstruct the original graph, to
discover communities, and to predict links at a high precision. This fact applies to ap-
proaches such as HOPE and LINE that is originally designed to preserve high-order
proximity of the graph. One important reason is because of the highly non-linear
structure of the graph, which poses a great challenge.

5. Related Work

Recently, the graph embedding problem has attracted a great deal of interest. Researchers
have proposed various approaches such as matrix factorization [4,7,50,72] and deep neu-
ral networks [63,5,30,22,35,34,64,11,69]. The topics are also varied, including unsuper-
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vised graph embedding [4,50,51,57,41,39], supervised graph embedding [74,61,63,41,21,30],
community preserving embedding [68,6,78,10], and embedding in graphs of various types,
such as the bipartite graphs [19], the heterogeneous graphs [28,7,56,14,18,65,76], the
multi-relational graphs [52,45], the signed graphs [9,67,65], the uncertain graphs [24],
the incomplete graphs [73], the dynamic graphs [77,36,79,44], the scale-free graphs [15],
the hyper-graphs [62], and the attributed graphs (accompanied with attribute information
such as categories and texts on nodes or edges, or both) [71,67,36,60,25,26,37].

This paper studies the problem of how well the topological structure information is
preserved by the embeddings. One relevant research are [50,63] that use the metric PRE-
CISION@K for measuring the graph reconstruction precision. However, this metric is
based on graph reconstruction at the local scale of each node and thus cannot give an trust-
worthy evaluation. We give an explanation using the illustrations in Figure 3. Figure 3(a)
shows a graph with the top node weakly connected to a cluster of 6 nodes. Figure 3(b) and
Figure 3(c) are two reconstructed graphs of Figure 3(a). It is obvious that Figure 3(b) is a
better reconstruction since the main structure of the original graph are kept. On the other
hand, Figure 3(c) is a worse reconstruction, since the top node becomes a member of the
cluster and the graph structure has been totally changed. However, the local metric PRE-
CISION@K fails to discriminate the two examples. For example, let us look at node ’3’
and ’4’. The evaluation of these two nodes based on PRECISION@2 can be as high as 1.0
for Figure 3(c) while it is as low as 0.5 for Figure 3(b). On the other hand, the global met-
ric DELTACON can provide an unbiased evaluation of 0.6477 for Figure 3(b) and 0.5584
for Figure 3(c). Moreover, PRECISION@K is computationally expensive, especially for
large graphs. To fasten the computation, we usually employ the sampling strategy, but it
will cause a serious problem of unstable evaluation. To the best of our knowledge, we are
the first to propose the evaluation for graph reconstruction at the global scale of graphs.

There are research on embedding-based link prediction. One line of such research
focuses on the knowledge graphs, which can be viewed as a multi-relational graph com-
posed of entities (nodes) and relations (different types of edges) [38,70,2,13,49]. Each
edge is represented as a triple of the form (head entity, relation, tail entity). Link predic-
tion in knowledge graph is typically referred to as the task of predicting an entity that
has a specific relation with another given entity [66]. For example, (?, PresidentOf, USA)
is to predict the president of USA. Another line centers on plain graphs, as the topic in
this paper. The settings are also similar to what we have discussed in Section 3.4, i.e.,
to remove a small amount of the links and use the embeddings to predict the removed
links [21,50]. The difference is that previous research overwhelmingly employ the Area
Under the Curve (AUC) [16] as a metric for evaluation. AUC can be interpreted as the ex-
pectation that a target link is predicted with a higher probability than a randomly chosen
non-existent link. However, considering the sparse feature of graphs, there are dramati-
cally larger number of non-existent links than the number of removed links. Consequently,
AUC is not an unbiased metric for evaluation and it is much easy to achieve a high score
based on it [43].

To the best of our knowledge, there is few research for studying the divergence of the
original link distribution and the embedding-derived distribution and the consistency of
the communities discovered from the graph and embeddings.
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Fig. 3. Examples of graph reconstruction. (a) The original graph. (b) A reconstructed
graph that has similar structure as the original one. (c) A reconstructed graph that has, to
some extent, changed the structure of the original one. The red color emphasizes the
difference between the three graphs.

6. Conclusion

We studied how well the graph topological structure is preserved by the embeddings from
four aspects: 1) graph reconstruction based on the embeddings, 2) the divergence of the
original link distribution and the embedding-derived distribution, 3) the consistency of
the communities discovered from graph and embeddings, and 4) link prediction based on
the embeddings. We did experiments on 12 graphs for 6 state-of-the-art graph embedding
approaches. We found that the embeddings by these approaches can only preserve part
of the topological structure. It is insufficient to rely on the embeddings to reconstruct the
original graph, to discover communities, and to predict links at a high precision. This
suggests that although the current graph embedding techniques can benefit graph analysis
tasks such as label classification, we still cannot employ them for applications such as
graph compression.

Graph embedding is not perfectly solved and there is still some room for improvement.
Most of the embedding approaches ignore the hubness phenomenon that results in the
heavy-tail degree distribution [54]. How to effectively utilize the dimensionality of the
embeddings to encode the heavy-tail degree distribution will be left for our future work.

On the other hand, the proposed evaluation methods could be a standard for studying
the problem of graph reconstruction or graph compression based on the embeddings, and
be a benchmark for graph embedding approaches.
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